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Let S= {ZEC: Ilm(z)I <P} be a strip in the complex plane. Fi' denotes the
space of functions j: which are analytic and 2rr-periodic in S and satisfy

The Kolmogorov II-widths d", Gerfand n-widths d", and linear II-widths 0" of Fi2
in [2. the periodic Lebesgue space on the real axis are determined by

The same equations hold for d"(Fi2, [2) and o,,(iF. [2)' Fourier expansion of
order 2n - I is an optimal linear approximation operator for <>2" _ I = °2". In addi
tion, we construct an optimal linear 2n-dimensional approximation method. which
is based on sampling a function IE Fi' in 2n equidistant points in [0.271]. .,. 199,
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I. INTRODUCTION

Let S={':EiC: IIm(.:)I<[J} be a strip in the complex plane. In the
present paper we study the n-widths of the space H2, consisting of all
functions f, which are analytic and 2rr-periodic in S and satisfy

(
I 2n )1/2

II/II ii 2 : = sup -2 f I/U + i'l W+ 1/( t - i'l Welt < oc.
O,c;,,</f n 0

A function/in H2 has a non-tangential limit almost everywhere on as. The
boundary function belongs to l2(as) and the scalar product

1 [2" I .2"
(f,g)/i2=- /(t+i[J)g(t+i[J)dt+-

2
j f(t-i[J)g(t-i[J)dt

2rr 0 rr 0

induces a Hilbert space structure on H2.
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We find the exact value of the n-widths of the unit ball of H2 in L2, the
periodic complex-valued Lebesgue space on the real axis. Furthermore, we
show that sampling in 2n equidistant points in [0, 2nJ yields an optimal
2n-dimensionallinear approximation operator. Finally an explicit represen
tation for the optimal approximation operator is given in terms of elliptic
functions.

Analogous results are already known for the n-widths of the space j(2,
consisting of all functions f, which are analytic in S, real and 2n-periodic
on the real axis, and satisfy

I f2n
sup '2 IRe!(t+iIJWdt<oc.

O";;I'/<P n 0

The n-widths of the unit ball of j(2 in L~, the periodic real-valued
Lebesgue space on the real axis, are given in Pinkus [7, Chap. IV. 6].
Pinkus also established the optimality of sampling for j(2.

The fundamental difference between ii 2 and j(2 lies in the fact that func
tions in j(2 may be characterized as convolutions with a cyclic variation
diminishing kernel, while such a representation is not available for func
tions in jj2. Therefore other techniques must be applied in order to deal
with jj2 Our approach will consist in transfering the analysis from the
strip S to the annulus Q = {IV EC : q < Iwl < I(q}, where q = e p. Then we
will study the equivalent problems for holomorphic functions defined on Q.

For this purpose we extend some techniques, which were developed by
Fisher and Micchelli [3] for investigating the H 2-space in the unit disk, to
the doubly connected annulus.

In Section 2 we formulate our main results, while Section 3 contains the
corresponding proofs.

2. MAIN RESULTS

Let (X, II . if x) and ( Y, II· II y) be Banach spaces and let us assume that X
is continuously imbedded into Y by an imbedding operator T: X -> Y.

The Kolmogorov n-widths d" of X in Y are defined by

d,,( X, Y) = inf sup inf Ilx - YII y,

Yn lixllX~ 1 yE Yll

where Y" runs over all subspaces of Y of dimension n or less.
The Gel'fand n-widths of X in Yare defined by

d"( X, Y) = inf sup Ilxll y,
XI! I!xllx~ I

XEXn
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where the infimum is taken over all subspaces X" of X of codimension at
most n.

The linear n-widths (jll of X in Yare given by

(jll( X, Y) = inf sup Ilx - PllxIl 1"
P/I Ilxl!x~ I

where P" is any continuous linear operator of X into Y of rank at most n.
The aim of the present paper is the investigation of the n-widths of the

imbedding

Our approach to this problem will consist in transfering the analysis from
the strip S to the annulus Q = {H' E C : q < Iwi < l/q}, where q = e -/J. The
transformation IV = eC maps S onto Q and the operator

I: f(:) -+ g(w) = f( ~ log (W))

yields an isometry between F!2 and H 2, the space of all functions g, which
are analytic in Q and possess square integrable boundary values:

The trigonometric polynomials {e'k"} kE;Z on S correspond to the
monomials \ wk } kE;Z on Q and the Fourier coefficients offE fI2 are equal
to the Laurent coefficients of ~rE H 2

. Furthermore, I maps £2 isometrically
onto the space L 2(E), where E = {w E C : Iwl = l} represents the unit circle.
Denoting by T the imbedding operator from H 2 into L 2( E), we obtain the
following commutative diagram:

H-2~ L-
2

From the diagram we see that the n-widths of fi2 in l2 are equal to the
n-widths of H 2 in L 2(E). Every optimal subspace for f yields an optimal
subspace for T, and vice versa. The same is true for optimal linear
approximation operators. In the following we will formulate all our results
for the imbedding T: H 2

-+ L 2(E) for technical convenience; the back
transformation from T to f is straightforward. With this convention our
first result reads as follows.
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THEOREM I.

The same equations hold for d"(H2, L 2(E)) and o,,(H2, L 2(E)).

Furthermore, let us denote by

307

kE 71,

the Laurent coefficients offE H 2. Then we have

(i) P2n-l: H 2 -> L 2(E) ft----> I.~:I_("_I)ak(f)eik(} IS an optimal
linear operator for o2n.!(H2, L 2(E)) = r5 2)H2, L 2(E)).

(ii) X 2n - 1 = {IE H 2 : a -In-I )(/) = '" = a,,_ 1(/) = O} is an optimal
subspace for d 2,,-I(H2, L 2(E))=d 2"(H 2, L 2(E)).

(iii) Y2,,_I=span{e-i(,,-I){', ... ,eiln-IIO} is an optimal subspace for
d2,,_dH2, L 2(E))=d2,,(H2, L 2(E)).

Theorem I will be proven by applying classical spectral methods. Our
second main result states that in the even-dimensional case in addition to the
classical methods there exist nonclassical optimal approximation methods,
which are based on sampling. To fix our notation, let

j= 1, ..., 2n,

be the roots of unity of order 2n. Let us define an information operator L
by

For f E H 2 we define (J 2"(/) to be the solution of the minimum norm
problem

mm IlgIIH2.
Lg~Lr

Since H 2 is a Hilbert space, the last extremal problem attains a unique
minimum, which depends linearly on f, i.e.,

211

(J2,,(/) = I. f((j)l1 j ,
i~ 1

640822·10
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where the functions hi E H 2
, j = I, ... , 2n, are independent of f Because of

the minimum norm property a 2n(j) is called the spline interpolating
(j«(Il, ···,f«(2n))· We are now prepared to formulate

THEOREM 2.

(i) Spline interpolation in 2n equidistant nodes is optimal:

2n
fr--+ I f«() h)eili

)

i~ 1

is an optimal linear operator for J21l(H
2, L 2(£)).

(ii)

v2n = {JEH 2
: ftC) =0, j= I, ... , 2n}

is an optimal sub.lpace for d 2"(H 2, L 2(£)).

(iii)

{ ill h iO}V2n = span hl(e ), ... , 2n(e )

is an optimal subspace for d 2n(H 2, L 2(£)).

The proof of Theorem 2 relies decisively on the fact that H 2 possesses a
reproducing kernel, i.e., for each (E Q there exists a function K(·, 0 E H 2

such that f(O = (j(.), K(·, 0)H2 for all fE H 2
.

With the help of elliptic functions it is possible to give an explicit
representation for the spline interpolant. We will use the standard notation
for the Jacobi elliptic functions sn(z, k), cn(z, k) and dn(z, k) with modulus
k (see for example Bateman [I]). The complementary modulus is given
by k' = j1="k2 and the complete elliptic integrals of the first kind with
moduli k and k' are denoted by K and K', respectively.

THEOREM 3. The spline interpolant a 2n(j) for f E H 2 is given explicitly
by the formula

K (2nA ) 2n
a2n(j)(0 = 2 A sn -. log (0, A I (-I)i+ I

n m i~ I

cn«K/ni) log(O - (j - I )(K/n), k) f
x (n.

sn( (K/ni) 10g(0 - (j - I )(K/n), k) J

Here K and A are complete elliptic integrals of the first kind with corre
sponding moduli k and Adetermined by the equations

nK'
2K=P

A' K'
-=2n-.
A K
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COROLLARY. For functions f E HZ, analytic and be-periodic in the strip S,
the optimal spline interpolant has the form

K (2nA ) ZlI
(1211(/)(=) =2sn -=, A L (-I)J+ I

nA 17. J~ I

X cn((K/ll)= - (j-I )(K/n), k) f ((j - I }1l).
sn((K/n)=-(j-I}(Kjn),k) n

Theorem 3 was brought to the author's attention by the referee. The
author is grateful to the referee for his valuable advice.

3. PROOFS OF THE THEOREMS

Proof of Theorem I. Let us start with the fundamental observation that
the monomials {="} II EZ form a complete orthogonal system in H 2 (cf.
Sarason [8 J). Since

the unit ball U in HZ can be characterized in the following way:

U={fEH2
: IlfIIJl,~I}

Denoting the imbedding operator H 2
-> L 2(£) by T we obtain

Since {eikl!} kE Z is an orthonormal basis for Lz{ E), we see that T( U) is an
"ellipsoid" in L 2( E). Thus Kolmogorov's theory of n-widths of ellipsoids
(see Lorentz [5J, Pinkus [7, Chap. IV. 2J) yields that

and that span{e -illl - III!, ... , e;(l1 - 1W} is an optimal (2n - I)-dimensional
subspace.
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The remaining assertions of Theorem I follow from the fact that both H 2

and L 2( E) are Hilbert spaces and therefore

For further details we refer the reader to Pinkus [7, Chap. IV. 2]. In con
clusion, we stres~ once more the decisive point of the Proof of Theorem I,
namely that the monomials are at the same time a complete orthogonal
system in H 2 as well as in L 2(E).

Proof of Theorem 2. Our approach to Theorem 2 uses ideas similar to
those of Fisher and Micchelli [3], who investigated the H 2-space on the
unit disk (see also Fisher and Micchelli [4] and Fisher [2]). It turns out
that some of their techniques can be extended from the unit disk to the
doubly connected annulus.

In order to prove Theorem 2 we have to show that

Here (J 2,,(/) = 'L;':o tf( (j) hi E H 2 is the spline, which interpolates the
data (/«(1), "''/«(2,,)) with minimal H 2-norm. Since H 2 is a Hilbert
space, (J2,,(/) is well defined, it depends linearly on the data, and
Q2,,:f~ I - (J 2,,(/) is the orthogonal projection of H 2 onto the subspace
V 2

" = {J E H 2
: I( (j) = O. j = I, .... 2/1}. Thus

sup III -0'2,,(/)111.21£)
fE U

= sup II Q2"/III.2(EI = sup{ 11/111.#:) :/ E U, /(() = 0, j = I, "" 2/1} =: 0.
fEU .

As indicated above, we will denote the last supremum by 0 in the sequel.
o may be characterized with the help of the Blaschke product B on the
annulus Q with zeros in (I' ..., (2", which is defined as follows:

B(z)=eexp(-I P(Z,(j))'
J=I

Here E is a constant factor of modulus one and

P(Z, (j) = g(z, (j) + ih(z, C:),
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where g(z, CJ is the Green's function for Q with singularity in (/ and h(z, (/)

is the harmonic conjugate of g(z, O. Although each h(z, (/) is not single
valued, B(z) is single-valued, because the period of the sum :L;: I h(z, C) is
an integer multiple of 2n. Furthermore, we may assume after scaling that
B is real-valued on E. For more details on Blaschke products we refer the
reader to Fisher [2].

Of decisive importance is the fact that IB(z)1 = I for z E 8Q, since g(z, (/)

vanishes identically on 8Q. This property implies that

This motivates us to introduce on E the measure

In the following we must carefully distinguish between the Lebesgue space
L 2( E) with respect to the standard measure dO and the space L 2( E, /1) with
respect to the measure /1. With this notation we obtain that

where r denotes the imbedding operator from H 2 into L 2( E, /1).
In view of the fact that Ilrf= Ilrr'll, where r': L 2(E,/1)-.H 2 denotes the

adjoint operator of r, our further strategy consists in determining the
largest eigenvalue of the selfadjoint, nonnegative, compact operator
H': L 2( E, p) -. L 2( E, p). For this purpose we use heavily the reproducing
kernel structure of HZ.

Since the normalized monomials CfJk=Zk/(qZk +q-Zk)I/2, kE71., are an
orthonormal basis of H 2

, the reproducing kernel is given by

(2.1 )

Now let A be an eigenvalue of H':L 2(E,p)-.L z(E,p) with eigen
function ¢:

H' cP = ;,cP·

Since by definition rI =II E' (2.2) can be written in the form

(2.2)

for all () E [0, 2n].
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The reproducing kernel property implies

H}= (<p( . ), r( K( ., e ))) 1.2I/i./t)

=~ f2" <p(e il
) K(e il

, eill ) IB(ei1W lit
2rr ()

= ~ f2" K(e ill, eil) <p(e il ) IB(eitW dt.
2rr ()

Therefore (2.2) is equivalent to the following integral equation:

(2.3 )

Theorem 2 will be proved if we manage to determine the largest eigen
value of the last equation. For this purpose we observe that in view of (2.1)
the function

is an eigenfunction for the problem

Repeating the same analysis as that above for the operator T': L 2( E) --> H 2

instead of r l
, we see that

for all ::: E Q.

The identity theorem for holomorphic functions implies

Consequently

1
(T'IjJ)(:::) = q211 + q-21' 1jJ(:::) for all ::: E Q.
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Let us fix a point WE Q and choose in particular

fo(-:') = K(-:., w) B(-:.) B(w).

Since B(-:.) = I/B(-:.) for -:. E 8Q, we obtain

313

Since the zeros of l/J and B coincide, g = l/J/B is a well defined function in
H" and therefore

On the other side,

Combining the last two results with the special choice w = e dl yields that

Hence g is an eigenfunction for Eq. (2.3). By definition g is zero free in Q
and real on E. In particular, g cannot change its sign on E.

Finally, let us take into account that the symmetric kernel K( eiO, e it
) is

positive on E as is proved in Pinkus [7, Chap. III. 4]. Now it is a familiar
result that if an integral operator with a positive symmetric kernel
possesses an eigenfunction without sign changes, then the corresponding
eigenvalue must be the largest eigenvalue of the problem; for a proof
we refer the reader to Melkman and Micchelli [6]. Consequently,
1/(q"n + q -111) must be the largest eigenvalue of the integral equation (2.3).
This completes the Proof of Theorem 2.

Proof of Theorem 3. The starting point for the proof of Theorem 3 is
the observation that in view of the Hilbert space structure of H" the
operator /1--> f - 0 111(f) is the orthogonal projection of H" onto the
subspace V"n = {/E H" : f((j) = 0, j = I, ... , 2n}. In order to get an explicit
representation for / - 01n(/), we introduce the kernel

where K(-:., () is the reproducing kernel of H".



314

Set

KLAUS WILDEROTTER

Since (f(.),K2n(.,())=(f(·),B(.)K("(j)) B((j) =0, we have Q2n(f)(C)
=0 for any fEH 2 and j= 1, ... ,2n. If fE V 2n, then f/BE H 2 and
using that B(::)=I/B(::) on oQ, we obtain that (f(·),K2,,(·,())=

(f(. )/B(·), K(·, 0) B(O =f((). Thus Q2n(f) = ffor fE v 2n. Finally, Q2n is
selfadjoint, since K 2n is Hermitian. Consequently, Q2n is the orthogonal
projection of H 2 onto V 2n, i.e., Q2n(j) = f - u 2,,(j)·

In order to evaluate (f(.), K 2,,( " 0) H' we first express K(::, 0 in terms
of elliptic functions:

y ex ::T' IX cos((s/i)(log(::)+log(()))
K(::,(,)= ~,. ,=-+ '\ ..~~

S~'-'-OC q.s + q-_' 2':-1 cosh(2sf3)

K (K - )= - dn --: (log(::) + log(()), k
n m

where K and K' are complete elliptic integrals of the first kind with moduli
k and k' =)1 - k 2 which satisfy the equation

nK'
- = 13 = log( l/q).
2K

Here and in the following we use the standard notation for the Jacobian
elliptic functions (see for example Bateman [I]). In particular, for:: E oQ,
i.e. 1::1 = q+ 1 = e±f!, we have

- K (K )K(z, 0 = K((, z) = - dn --: (Iog(O -log(::) ± 213), k
n m

= ~ dn (~ (log(() - log(::)) += iK', k)
n m

K cn((Kjni)(log(z) - log(O), k)
=+- .

- ni sn((Kjni)(log(::) - 10g(O), k)

It is easy to show that

I f -dz I f -dz(f, g)H2=-2' f(z)g(z)~--2' f(::)g(z)-
m Cliq :: m c; z
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where Cp={ZEC: Izl=p} and the minus in C; indicates that Cq is
traversed in the clockwise direction, while C l/q is traversed counter
clockwise,

Set C = C 1/q U C;. Then

Q (
V _ "-I-f Kj(z) cn((Klni)(Iog(z)-log(O),k)dz

01/! )(d-B(~) " , v'

- , 2m em B(z)sn((Klm)(log(z)-log(I,)),k) z

The last integral can be evaluated by the residue theorem

Q21/U)(()

_ fi. _ K v 2" I cn( (Klni )(1og( 0 - log( ()), k) IJ

- (() , B( ~) I v '" KI 'I " I ( k I (I,),,- m /~ll,jB(~)s/1(( m)( og(I,)- og( )), 0)'

Since Q21/(f) = j - a 2,,(f), the minimal interpolant is given by

" K v 2" I c/1((Klni)(Iog(O -Iog((;)), k) '"
a21/(f)(~)=--:B(~) I "B'(r) '((KI ')(1 (")_1 (V')) k-)/(I,;)-m j~ 1 ~J 'oJ.\I1 m og I, og I,j ,

What remains to be done is to express B(() and B'((j) in terms of elliptic
functions, B can be written in the form

2J1-1 (K K )
B((,l = k" n SIl --: log(() - j -, k ,

j~O m n

Using the first fundamental transformation of elliptic functions of degree 2/1
one can show that

11 (lnA )B(O = -y'), sn --;;-log(O, A ,

Here A is the complete elliptic integral of the first kind with modulus ;,
determined by the equation

A' K'
-=2n
A K'

Consequently,

11 2nA
B'((i) = y' A( -I )j-,-" '

mr,j
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Inserting these results in the above representation for (J 2,,(/) yields:

K (2nA ) 2/1 "
(J2/1(/)(O=-?-sn -.log(O,A L: (_1)/+1

_nA nl j-I

cn((Klni)log(O-(j-I)(Kln),k) f e

x """" (~).
sn( (Klni) log (() - (j - I )( Kin), k) . /

This completes the Proof of Theorem 3.
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